
Tool for Extraction of Functional Requirements
from Legacy Code

Pooja Khanna

ASET, Amity Universiy
Lucknow, India

Abstract-A business rule specifies or restraints one aspect of
business that is intended to verify business structure or
determine the behavior of our business. Business rules often
focus on access control issues. There author has proposed a
re-engineering method that is implemented to extract a
business rule from legacy source code. With time, generally
the valuable documents of system are lost and in absence of
documentation it becomes difficult to maintain such legacy
codes. A case study is included to check the accuracy of the
proposed method. The system is checked against the extracted
rule with the functional requirement presented in the SRS of
the case study.

Keywords— Re-engineering, functional requirement, business
rule.

1 INTRODUCTION
Due to rapid advancements in software industry, structure
of a software system progressively degrades. Thus
maintenance of large and a critical legacy system has
become hard. A legacy system is one which is extremely
valuable to an organization, performing key strategic
functions. But maintaining such systems as to incorporate
new functionalities or due to organizational policy
changes become hard in the absence of proper
documentation, qualified staff and other resources.
The cost of re-engineering a system is generally less than
developing a new system. Sometimes what is required is,
add some functionalities, change some policies, change
the structure of system without changing functionalities,
changing the architecture of the system to add some non
functional requirements and for making these changes, it
is worthless to develop a new system. But still it is a
matter of debate that whether to go for forward
engineering or for re-engineering.

2 OVERVIEW
 The focus of this work is intended to develop a Re-
engineering method to automate the extraction of business
rules from Source code. Extracted business rules can be
classified as structural, behavioral and constraint rules. In
this, a program has been be taken as input and then
candidate variables are identified.
The available tools left the task of identification of
variables on the maintainer. And good approximation of
variable is necessary of extraction of required business rule.
The identified variable will be used for program slicing.
The output of program slicing will be sliced segments
which will contain the business rule. These sliced segments
will be than given to presentation tool to present the rule in
different views so that different stakeholder can easily

understand the rules. To check the accuracy of the
methodology authors included a case study of computer
science department. The case study includes SRS and code
of the system. The accuracy of the system depends on the
data (approximation of variables) we choose for extracting
business rules.

3 OBJECTIVE
In recent years maintenance has become major activity in
software industry and as software system age, their original
motivation gets lost. In the absence of requirement
documents, it is very difficult to maintain a software
system. The scenario gets worst in case of a business
organization where business policies and decisions
(Business Rules) are implemented through an information
system. With the growth of the organization, policies and
decisions also get changed and to incorporate those changes
in the system we first require tracing out the point in source
code where those rule (Business Rules) have been
implemented.
Fig 1 shows that an organization provides documents that
contain business rules for development of a system. With
the time, various changes have been done on the system to
maintain the system. This results in disparity among the
document and the software, as proper documentation was
not done along with the maintenance work.

 Fig 1 Re engineering Need

Reading a code is much difficult task than writing a code
(program). As a result, extracting the information from a
system, it may be structure, architecture, design,
requirements of system, remains a challenging job. The

Document preparation
Business rule

Development of
software
implementing

Functional updates and
maintenance

Updated
document

Disparity among document and software

Updated
software

Design coding and
testing

Updated
Document

Design coding and testing

Pooja Khanna / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2134-2138

www.ijcsit.com 2134

task of a software re-engineer is to bridge the gap between
operational level at which a program is and the conceptual
level, at which a business system works.
Re-engineering helps in better understanding of system
even if documentation is not available. Re-engineering a
system is generally less expensive than developing a new
system . A re-engineering method can help in extraction of
business rules buried in source code of legacy system. The
extracted business rule must be at high level of abstraction
so that every stakeholder of the system could understand
the system. The fully automation of the system is a difficult
task and system maintainers don’t want a black box tool.
They need a transparency so that they can well understand
the processing of the system.

4 RELATED WORK
A B Earls, S M Embury and N H Turner have proposed a
method [A B Earls, S M Embury and N H Turner ,2002]
for manually extracting business rules from legacy source
code. Goal of this work is to provide guidelines to the code
readers of the source code to extract business rule in
effective way in terms of time. Since no organization have
extra manpower that could be engaged for long in
extracting rules (functional requirements).The authors have
also discussed the two already available methods for
extracting business rule:
Program centric:Their aim is to discover the rules in an
information system by analyzing program Code.Data
centric:This involves analysis of data set produce by
information system to extract business rules. In the paper,
they have used method of finding error handling section
and translating the conditions that led to error into business
rules. Then they proposed two phase approach for the
evaluation of method and for that they used operator
service information system (OSIS) program. Paper
proposed the business rule extraction viability factor
(BREVF) sampling method that helps code reader to gain a
quick and rough estimate of applying the method to a
program. They also pointed the weakness of the method as
the inability to extract business rules that are not violated.
At the end they have mentioned about the need to develop
more tools and methods for extraction of rules.
J Shao and C J Pound [Shao J and Pound C,1999] have
proposed “Extracting business rules from information
system”. Different types of business rules and techniques
to unlock these rules are proposed in this work. These are:
Structural business rules Constraint business rules
Behavioral business rules. According to the study of
program and data centric methods , it is revealed that
individual method is not sufficient to extract all rules. They
proposed a data centered program approach to extract
constraint type business rules. The approach presented
here is consisted of four components: Parsing tool ,Schema
tool, Extraction tool, Presentation tool.The work of this
paper is in initial stages and they are working on prototype
of the system or tool.Business requirements extraction
(BRE) is a re engineering tool for extracting business
requirements from COBOL legacy applications developed
by software mining [cobolmining.com, BRE_brochure
.pdf]. BRE is successful in extracting business rules from

COBOL legacy application but the problem is the user
should be an expert of the system who has a good
knowledge about the domain as for extracting business rule
he has to enter a filtering criteria which is comprise of a
variable and statement no. BRE basically targets only
COBOL application and no further enhancements for any
other language is given. Many other tools are also
available ww.csse.monash.edu.au,free_tool] like RiGi a
software visualisation tool, developed for visualising
graphs, with many other features, VCG a ``visualization
tool for compiler graphs''. And many more but almost every
tool helps in better understanding of program through
graphs only.
Panagiotis Lions, Philippe aubet, aurent Dumas, Yan
Helleboid, Patrica Lejeune [Linos, P.; Aubet, P.; Dumas,
L.; Helleboid, Y.; Lejeune, 1993] have proposed “CARE:
An environment for understanding and reengineering C
programs”.Computer Aided RE-engineering (CARE)
maintains a repository of control-flow and data flow
dependencies of C program. It facilitates incremental
program modification. This paper presents the architecture
of CARE and empirical evaluation of CARE by modifying
small and medium size C program.
Chih-Wei Lu, William C. Chu, Chih-Hung Chang, Yeh-
Ching Chung, Xiaodong Liu and Hongji Yang [Chih-Wei
Lu, William C. Chu, Chih-Hung Chang, Yeh-Ching Chung,
Xiaodong Liu, Hongji Yang,2002] have proposed
“Reverse engineering”. This paper discussed about legacy
system and the need of this system in reengineering.
According to this work, reverse engineering can be a time
consuming task in lack of proper tools. They have also
mentioned that reverse engineering becomes difficult due
to several factors, like: Inconsistent programming
style.Lack of staff who know legacy system language, Poor
documentation, Structure corruption. Paper discussed a
reverse engineering process which include Component
Analyzing, Design recover, Design reconstructing. Various
tools are available for Component Analyzing phase which
can easily extract artifacts like structure chart, variables,
attributes, functions, program slices , call graph, data flow
graph and control dependencies. Extracting original
requirements is a tough job and this requires domain
knowledge. So, generally all available techniques use
structural and knowledge representation to get some high
level information. Recovered domain knowledge plays an
important role in Quick understanding of the back ground
of the application in case of lost or inconsistent document.
And can be reused to develop new application. In Design
Reconstructing phase System model and design
specification will be examined and integrated to reconstruct
precise view of the design model, which will help in
maintenance and re-development process.
Chia-Chu Chiang and Coskun Bayrak,Member IEEE
[Chia-Chu Chiang; Bayrak , 2006] have proposed a paper
“Legacy software Modernization”. This paper discussed a
semi automated approach for extraction of business rule
from legacy source code. They suggested a component
interconnection model that describes a standard method for
communication of different component in different
environment. They explained the need of re-engineering by

Pooja Khanna / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2134-2138

www.ijcsit.com 2135

the problem of Y2K. According to this paper Adaptive
maintenance is an activity that is done to adapt
requirements due to up coming needs new software,
technology, business policies etc. The paper has suggested
three types of activities in adaptive maintenance: rewriting,
wrapping and re-engineering.
Wrapping can add few functionalities to legacy system
using middleware technology though inherent deficiencies
of the system remain there. Rewriting legacy system means
new functionality can be added but this is an expensive
process and organization may not be interested in rewriting
whole system. Paper has discussed a re-engineering method
for software modernization. The goal of the paper is to
build reusable components from legacy source code. Paper
has discussed the program slicing technique for extraction
of business rule.A list of output data items is selected from
entity relationship diagram and data dictionary so that user
can select a variable to start program slicing. After finding
out the variable v, they searched the last statement of the
program to start program slicing. As they use last statement
of program as starting point for slicing, in case of large
program it become time consuming task. After selection of
output variable v and starting point p control flow graph
and data dependency graph are used to get the program
slice. Since the goal is to search the common code segment.
They suggested data constraints and flow constraints to
minimize the no slices extracted.
Raghavan Komondoor and Susan Horwitz [Raghavan
Komondoor and Susan Horwitz,2001] have proposed a
paper’ Using slicing to Identify Duplication’. Paper has
suggested a slicing technique to identify duplicate code.
Understanding and maintenance of a program is often
difficult because of duplicate code. Detected duplicate code
is extracted into a separate new procedure, and call is made
to the new procedure by the instances of the duplicated
code. The paper describes the design and initial
implementation of a tool. The approach followed use the
program dependence graphs (PDGs) and program slicing
for finding isomorphic PDG subgraphs that represent
clones. The main advantages of the approach are that tool
can find clones in which matching statements have been
reordered, can find non-contiguous clones and clones that
are enlaced with each other. The followed algorithm has
three basic steps:
Step 1: Finding pairs of clones.
Step 2: Removal of subsumed clones.
Step 3: Combining pairs of clones into larger groups.
David W. Binkley and Keith Brian Gallagher [David W.
Binkley and Keith Brian Gallagher , 1991] have proposed a
paper ‘Program slicing’. the paper has discussed a program
slicing technique for both structured and non structured
programs for Computing Slices they discussed some
terminology .
 A directed graph G is a set of nodes N and a set of edges
<ni , nj> where ni and nj belongs to N.For edge (ni ; nj) €
E, ni is an successor of nj G contains two special nodes,
nstart which has no predecessors, and nend, which has no
successors. A control flow graph for program P is a graph
in which each node represents the flow of control in P. A
edge between two nodes means that the result of the

predicate expression at the node pointed by the edge will
decide whether to execute the other node or not.Two sets
associated with each node: REF (n), the set of variables
whose values are used at n, and DEF (n), the set of
variables that are defined at n. Program slice is a collection
of those statements of P that define behavior of v at s for
slicing criteria <v, s>.

5 PROPOSED APPROACH
First of all, we identify the variable that represents valid
business rules. All variables of the system or program can
be considered but they are large in amount and even all
variables are not helpful in identifying business rules. The
program is decomposed by analyzing their data and control
flow on the basis of identified variables. Retrieved relevant
code is then analyzed for extraction of different types of
business rules [Hay D and Anderson Healy K,2000] like

Structural
Structural business rules work on one data object and
change or derive another data object. So it specifies a
relationship between data objects e.g.
 An employee is a person
So there is a relationship between data objects that
employee is a type of person.

Behavioral
In this on occurrence of an event, state of data objects
changes. They are implemented as procedural programs
e.g.
On withdrawal of money balance should be debited.

On withdrawal of money event value stored in balance data
item will be changed

Constraint
In this valid state of an object is checked. This can be done
by searching data base for valid state of data object e.g.
A student should not be allowed for exams with attendance
below 70 percent
Status of student attendance will be checked before any
processing. For extraction of these rules data centric or
program centric approach separately is not sufficient. So I
have used data and program understanding technique for
extraction of business rules.
Fig 2 shows that extraction of business rule is not a fully
automated process. Understanding a legacy system requires
automated and manual analysis.

 Fig 2 Analysis of legacy system

Automated
Analysis

Manual
Analysis

Manual
Analysis

Extract
ed
Informa
tion
Store

Program
structure
diagram

Program
structure
diagram

Program
structure
diagram

Document
ation store

Pooja Khanna / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2134-2138

www.ijcsit.com 2136

The system provides the user with flowchart of Individual
Programs to better understand the flow of process steps.
Extraction of Business Rules using is done using
“Variable” filters. each variable is assignment an
appropriate descriptions for better understanding and usage.
The output as Business Rules are presented in Natural
Language (ENGLISH)

6 METHODOLOGY
Business rule represents structure, behavior or constraints
of an organization. So to implement a business rule through
a program what is required is some input, conditions,
assignments, results. Formally a business rule is a code
segment in program where a input is checked based on
some condition using conditional operators and result either
assigned after calculation or in form of Boolean yes or no
to output variable e.g.

 IF HRS-WORKED > 42
 COMPUTE TOTAL-SALARY = 42 * WAGE-RATE
 + (HRS-WORKED - 42) * 2 * WAGE-RATE
 ELSE
 COMPUTE TOTAL-SALARY = HRS-WORKED *
WAGE-RATE.

In above code salary of an employee is calculated and it
represents a structural business rule as if Hour worked is
more than 42 hrs. Total salary will be 42 times wage rate
plus extra amount of extra hrs is calculated by double of
wage rate. To extract such business or any business rule
we first have to identify the candidate variables, after that
using program slicing we extract the code segment where
possible business rule is implemented and then those code
is presented in a form to maintainer.

So to extract a business rule, we first have to identify the
data (out put variable) that implements the business rule.
Now next step is to find the reference (Assignment
reference) of the data in which it is used in the program.

There are various references of data in a program.

Usage reference
Conditional reference
Assignment reference

Assignment references are the place where data are created
or altered, so they are the key place for extracting the
business rules.

New_price = old_price + (old_price x sale_tax);

So here a business rule is implemented that new price will
be old price of the commodity plus sale tax over the price
of the commodity. But collections of these assignment
statements is not a simple task as these assignment
statements are scattered along the program. E.g.

 Fig 3. Example program slicing

In above example if we concentrate on ans [] assignment
reference to this variable is made at various lines like

 3. ans[lans] = '_';
ans[lans] = 'x';
13 ans[lans]='M';
15 ans[lans]='x';
20 ans[lans] = '_';
22 ans[lans] = 'x';

So method used to extract business rule implemented with
ans [] is we will find out the point where these assignment
references are triggered. We have maintained a tree
structure were we maintain a relation of assignments and
triggering conditions. The assignment statements are
captured using static forward program slicing. E.g

11. if(abb[a] == ff[f])
12.{
13 ans[lans]='M';
15 ans[lans]='x';
18 }
if(ff[f] == ' ')
ans[lans] = '_';
else
ans[lans] = 'x';

These are the slices we get now the main task now is to
represent these extracted program segments in a form that
may be easily understood by a reader.

1. else if(a== la && f < lf) {
2. if(ff[f] == ' ')
3. ans[lans] = '_';
4. else
5. ans[lans] = 'x';
6. convert(a, f+1, abb, ff, la, lf, ans, lans+1);
7. return;
8. }
9. else if (a < la && f == lf)
10. return;
11. if(abb[a] == ff[f])
12. {
13. ans[lans]='M';
14. convert(a+1, f+1, abb, ff, la, lf, ans, lans+1);
15. ans[lans]='x';
16. convert(a, f+1, abb, ff, la, lf, ans, lans+1);
17. return;
18. }
19. if(ff[f] == ' ')
20. ans[lans] = '_';
21. else
22. ans[lans] = 'x';
23. convert(a,f+1,abb,ff,la,lf,ans,lans+1);
24. }
25. else if(a== la && f < lf) {
26. if(ff[f] == ' ')
27. ans[lans] = '_';
28. else
29. ans[lans] = 'x';
30. convert(a, f+1, abb, ff, la, lf, ans, lans+1);

31. return;

Pooja Khanna / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2134-2138

www.ijcsit.com 2137

7 RESULT ANALYSIS
For analysis of the of the tool we have included case
studies with its functional requirements. The accuracy of
the system is checked by comparing the final output of the
system with the functional requirement present in the SRS
of the case studies after considering code for each case
study.
Case Study 1
There are a set of classrooms in the computer science
department. The department offers courses every semester,
which are chosen from the list of department courses. An
enrollment No is must for a course and could be for
graduate students or undergraduate students. For each
course, the instructor gives some time preferences for
lectures.
Case Study 2
A railway reservation system from open source is
considered as another case study. a reserve module with
Few functional requirements is considered here.
The system is run against various modules of two different
case studies .Table 2 list the results we got. For module
sched_pg_pref() of CASE STUDY 1 we have checked the
system for 3 different variables against Pref_lst no business
rule implemented. But for TimeTable[][] we get one rule in
both modules sched_pg_pref() and sched_ug_pref(
).Similarly in reserve() module from cas study 2 we run the
tool for two variabes. and got results as 2 FR by each
variables.

CS# MDL/FUN VAB_SET TLE BRC
1 sched_pg_pref() Pref_lst 3 0
1 sched_pg_pref() TimeTable[][] 1 1
1 sched_ug_pref() TimeTable[][] 2 1
1 sched_ug_pref() ConflLst 5 2
1 form_pref_list() Token 0 0
1 form_pref_list() New_pref 3 1
2 Reserve() Passenger.to 7 2
2 Reserve() Passenger.sex 4 2
 Table 1 No of Business rules extracted successfully after each run.

Where:
CS# = CASE STUDY NO
MDL/FUN = MODULE/FUNCTION
VAB_SET = VARIABLE SELECTED
TLE =TOTAL LINE EXTRACTED
BR = BUSINESS RULE CONTAINED

8 CONCLUSION
The automation of re-engineering process is not an easy
task and maintainers are not in favor of a tool which
directly re engineers a system. As sometimes they are
interested in extracting few information from the system in
the absence of documentation. In this work we have studied
the various available methods for extracting business rules
from a legacy system. We have proposed a method that will
help a maintainer in better understanding of the system.
Though the system is able to traces the segments where
businesses rules are buried but few statements are also
extracted which are not of any practical use. Future
enhancements include upgrading the system to control
more complex programs as we checked the methodology

for simple line code that does not includes loops and nested
loops and more complex structures.

ACKNOWLEDGEMENT
The authors are very thankful to Mr. Aseem Chauhan,
Chairman, Amity University, Lucknow, Maj. Gen. K.K.
Ohri, AVSM (Retd.), Director General, Amity University,
Lucknow, India, for providing excellent computation
facilities in the University campus. Authors also pay their
regards to Prof. S.T.H. Abidi, Director and Brig. U.K.
Chopra, Deputy Director, Amity School of Engineering and
Technology, Amity University, Lucknow for giving their
moral support and help to carry out this research work.

REFERENCES
[1] Ian Sommerville ‘Software Engineering’ , 6th edition, 2000 Pearson

Education.
[2] BYUNG-KYOO KANG and JAMES M. BIEMAN ‘A Quantitative

Framework for software Restructuring’ ,journal of software
maintenance and research volume 11 issue, page 245-284, 18 Aug
1999

[3] Hay D and Anderson Healy K: ‘Defining business rules — what are
they really?’, White paper, The Business Rules Group, Version 1.3
(2000)

[4] A B Earls, S M Embury and N H Turner:’ A method for the manual
extraction of business rules from legacy source code’ BT
Technology journal Volume 20, Issue 4 (October 2002) Pages: 127 -
145 Year of Publication: 2002.

[5] Shao J and Pound C: ‘Extracting business rules from legacy
information systems’, BT Technol J, 17, No 4, pp 179—186
(October 1999).

[6] Linos, P.; Aubet, P.; Dumas, L.; Helleboid, Y.; Lejeune, “CARE An
environment for understyanding and re-engineering C program”
Software Maintenance ,1993. CSM-93, Proceedings., Conference on
Volume , Issue , 27- 30 Sep 1993 Page(s):130 – 139

[7] Harry M. Sneed & Katalin Erdos: ’Extracting business rules from
source code’, in Cimitile A and Mullar H (Eds):’proceedings of 4th
Workshop on program comprehension’, Berlin, Germany, EEE
Computer society Press,pp240-247(March 1996).

[8] Chia-Chu Chiang; Bayrak, C. ‘Legacy software Modernization’
Systems, Man and Cybernetics, 2006. SMC apos;06. IEEE
International Conference on Volume 2, Issue , 8-11 Oct. 2006
Page(s):1304 – 1309.

[9] Keith Brian Gallagher Keith Brian Gallagher:’ Using Program
Slicing in Software Maintenance IEEE Transactions on
Software Engineering Volume 17, Issue 8 (August 1991)
Pages: 751 - 761

[10] http://www.waset.org/pwaset/v16/v16-20.pdf. Raghavan
[11] Komondoor and Susan Horwitz ,Using Slicing to Identify

Duplication in Source Code’Lecture Notes In Computer Science;
Vol. 2126 Proceedings of the 8th International Symposium
on Static Analysis Pages: 40 - 56 Year of
Publication: 2001.

[12] Weiser M: ‘program slicing’, IEEE transactions on software
engineering,10,no4,pp 352-357 (1984).

[13] X. P. Chen, W. T. Tsai, J. Joiner, H. Gandamaneni and J .Sun,
“Automatic Variable Classification for COBOL Programs”,
Proc. of IEEE COMPSAC, 1994, pp. 432-437.

[14] Chih-Wei Lu, William C. Chu, Chih-Hung Chang, Yeh-Ching
Chung,Xiaodong Liu, Hongji Yang: ‘Reverse engineering’,
Handbook of Software Engineering and
KnowledgeEngineering,2002

[15] http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
[16] www.sei.cmu.edu/reengineering/lsysree.pdf
[17] .http://c2.com/cgi/wiki?WhatIsRefactoring
[18] www.cse.iitk.ac.in/JaloteSEbook/CaseStudies/CaseStudy1/SRS.pdf.
[19] http://en.wikipedia.org/wiki/Software_architecture.
[20] www.cobolmining.com/download/SM-BRE-Brochure.pdf.
[21] http://www.csse.monash.edu.au/~ipeake/reeng/free-swre-tools.html

Pooja Khanna / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2134-2138

www.ijcsit.com 2138

